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Abstract--The gas-liquid flow inside a circular, isothermal column reactor with a vertical axis has been 
studied using numerical simulations. The flow is assumed to be in the laminar, bubbly flow regime which 
is characterized by a suspension of discrete air bubbles in a continuous liquid phase such as glycerol water. 
The mathematical formulation is based on the conservation of mass and momentum principle for the 
liquid phase. The gas velocity distribution is calculated via an empirically prescribed relative velocity as 
a function of void fraction. The interface viscous drag forces are prescribed empirically. For some cases 
a profile shape is assumed for the void ratio distribution. The influence of various profile shapes is 
investigated. The results are compared with those where the void ratio distribution is calculated from the 
conservation of mass equation. The mathematical model has been implemented by modifying a readily 
available computer code for single-phase newtonian fluid flows. The numerical discretization is based on 
a finite volume approach. The predictions show a good agreement with measurements. The circulation 
pattern seems not to be so sensitive to the actual shape of the void fraction profiles, but the inlet 
distribution of it is important. A significantly different flow pattern results when the void fraction 
distribution is calculated from the transport equation, as compared to those with a priori prescribed 
profiles. When the void fraction is uniformly distributed over the whole distributor plate, no circulation 
is observed. Calculations also show that even the two-phase systems with a few discrete bubbles can be 
simulated successfully by a continuum model. 

Key Words: numerical modeling, column reactors, gas-liquid flow, two-phase flow, circulation, void 
fraction distribution 

I. I N T R O D U C T I O N  

The s tudy o f  the c i rcula t ion pa t te rns  inside a co lumn reac tor  is o f  theoret ical  and  pract ical  
significance, because o f  their  wide use in the indus t ry  as chemical  or  b iochemical  reactors.  Bubble  
co lumn reactors  offer several advantages  over  convent iona l  fixed bed reactors ,  e.g. in Fis-  
c h e r - T r o p s c h  slurry reactors  lower hyd rogen - to -monox ide  ra t ios  can be to lera ted  and hot -spots  
are  con t ro l led  in the bed so that  ca ta lys t  deac t iva t ion  is reduced.  The  gas may  be in t roduced  evenly 
th rough  a d i s t r ibu to r  p la te  into the slurry, so the c i rculat ion pa t t e rn  o f  con t inuous  l iquid phase  
can be cont ro l led  (Clark  et  al. 1990a). 

N u m e r o u s  ma themat i ca l  models  are avai lable  in the l i terature  for ca lcula t ion  o f  relevant  
pa ramete r s  such as the gas ho ld-up  (i.e. volume fract ion o f  the gas phase),  the l iquid velocity and 
the size and s t rength o f  the l iquid c i rculat ion cells. F r e e d m a n  & Dav idson  (1969), Rie tema & 
Ot t eng ra f  (1970) and  Hills  (1974) have repor ted  on app rox ima te  models  based on pressure ba lance  
to calculate  l iquid c i rculat ion velocity. Whal ley  & Dav idson  (1974) have shown that  their  model ,  
based  on the energy balance,  predic ted  l iquid c i rculat ion velocities which are in bet ter  agreement  
with exper iments  than  those ob ta ined  f rom the models  based on pressure balance.  Joshi & Sharma  
(1979) have adap t ed  the energy ba lance  me thod  and repor ted  good  agreement  between their  
ca lcula t ions  and exper iments  for  the values o f  the l iquid velocity and void fract ion.  Clark  et  al. 

(1987, 1990b) have reviewed the so called "dr i f t  flux mode l s"  and  presented their  improved  version. 
Rice & G e a r y  (1990) also p roposed  a model  for turbulent  flow in viscous bubble  columns  where 
they prescr ibe  a pr ior i  the void fract ion,  E, profiles empir ical ly .  They showed tha t  the c profile 
pa ramete r ,  m, can change an o rde r  o f  magni tude ,  and  it had  to be prescr ibed empir ical ly.  Mos t  
o f  these models  use pr imar i ly  empir ical  relat ions which relate the superficial gas and l iquid velocities 
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to the average void fraction. Clark et al. (1990b) suggested an approximate model to predict the 
empirical constant in one of these models, and also found that it varied significantly as a function 
of Froude number and Galileo number. Their conclusion was "that a direct drift-flux approach 
is not suitable unless the void fraction distribution is known and that buoyancy effects are 
insignificant." A further restriction in these models is that the size and the location of the 
recirculation zone must be assumed a priori. For example, in the model proposed by Clark et al. 
(1990b), two zones are identified, namely a central zone where only axial flow is assumed, and a 
lower zone where only radial flow is assumed. Such assumptions, which are inherent to most 
approximate models neglect the possibility of multiple circulation cells. To eliminate such restrictive 
assumptions, it is necessary to develop more rigorous computational fluid flow analysis with which 
the circulation and the void fraction distribution can be predicted. However such comprehensive 
numerical simulations of gas-liquid two-phase flow systems are lacking in the literature. This is 
not surprising in view of the fact that the mathematical formulation for multiphase flows is still 
in a stage of development. There is no definite form of the governing equations which is generally 
accepted (for a review, see for example, Stewart & Wendroff 1984). Other difficulties such as 
handling of interaction terms (interface conditions), the boundary conditions for the dispersed 
phase and interphase instabilities, make comprehensive numerical modeling a challenging research 
area and it calls for more attention from the computational fluid dynamicists. 

A recent paper by Antal et al. (1991) shows clearly how complicated a two-phase flow continuum 
model can be, even for the simplest flow situation of a fully developed flow in a vertical pipe. These 
authors present a detailed description of the lateral forces acting on the bubbles and demonstrate 
their importance. The flow situation in gas-slurry column reactors where there is usually multiple 
recirculation zones and a free surface bounding the flow, is distinctly different than that in a fully 
developed pipe flow where the flow is predominantly unidirectional. Hence not all of the 
assumptions made by Antal et al. (1991) are applicable to our case. 

This paper reports on the results of a study where the flow and the circulation patterns inside 
an isothermal column reactor model, in bubbly flow regime, have been simulated numerically. As 
a first step, only the equation of motion and continuity for the continuous phase have been solved. 
The gas velocity field is prescribed empirically. The void fraction is either calculated from the 
transport equation or profile shapes assumed. Only the laminar, bubbly flow regime is considered. 
This is done to avoid the complexities of a turbulence closure model at higher superficial gas 
velocities. The possible effects that may arise from the bubble induced pseudo-turbulence (see e.g. 
Celik & Gel 1993; O'Brien et al. 1993) are not included either. To minimize these effects we selected 
for this study, experimental cases where viscous fluids were utilized with the idea that the 
fluctuations caused by the passage of bubbles would be damped out and the results would not be 
significantly affected by the additional correlation terms. 

Our model eliminates many of the crude assumptions introduced in previous studies, such as 
those by Clark et al. (1987, 1990b), Durst et al. (1984), and Rice & Geary (1990), but at the same 
time it retains the desired simplicity. The present model is fairly simple, e.g. compared to that of 
Antal et al. (1991), but it contains the primary physical mechanisms to predict circulation patterns 
in gas-liquid column reactors. 

2. M A T H E M A T I C A L  MODEL 

Governing equations 

The mathematical model is based upon the conservation of mass and momentum for the liquid 
and gas phases including appropriate interface momentum exchange terms. Invoking continuum 
assumptions and performing a space or time averaging over a macroscopic control volume (see e.g. 
Anderson & Jackson 1967; Homsy 1983; Drew 1983), these equations can be written in cylindrical 
coordinates (for more details, see Clark et al. 1990 and Celik & Wang 1990; see also appendix A) 
a s :  

Continuity 

O---x (plUL) +-r~r  (rplvL) = 0 [1] 
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x-Momentum 

o 1o _ )oP 
O---~(plULUL)+r~r(rplULVL)= --(1 C~ x --pLg + FGt(UG--UL) 

+~,/~L-~-X +r~r~r /~L-~r  +~ x  /~L-~-X + r ~ ( r / ~ L ~ - x  [2] 

r-Momentum 

O 1 O 8P 
d--x (Pl ULVL) + r 8r (rpl VLVL) = --(1 -- E ) ~  r + FGL(VG -- VL) 

+~x #L-~-X +r~rr r#L~-r +r~rkr#L-~-r  +~Xxk#L~-r )--"L-~-[3] 
where the subscripts L and G denote the liquid phase and gas phase, respectively; E is the void 
fraction (i.e. volume concentration of gas), p~ = (1 - E)pL, P2 = Epc are the macroscopic densities, 
PL and Pc being the microscopic liquid and gas densities, respectively; u and v are the liquid and 
gas velocities in the x- and r- directions, respectively; g is the acceleration of gravity, #L is the liquid 
viscosity, P is the pressure and FCL is the momentum exchange function between the gas phase and 
liquid phase. The equations for the gas phase can be obtained from [1]-[3] by changing (1 - E) to 
E and the subscript "L" to "G". 

The last two viscous terms on the right-hand side of [2] and [3] do not normally appear in 
Navier-Stokes equations for an incompressible, newtonian fluid. But because of the non-zero 
gradient of the void fraction the fluid acts as a pseudo-compressible fluid and this results in the 
above-mentioned terms. A derivation in 2-D cartesian coordinates is presented in appendix A to 
clarify this point. 

The global assumptions involved in deriving [1]-[3] are: isothermal, steady, axisymmetric and 
incompressible flow without swirl and chemical reactions. Further, it should be noted that the way 
the pressure gradient terms should be handled in [1]-[3] is a controversial issue. There is 
considerable debate in the literature (see, for example, Stewart & Wendroff 1984) whether 
[(1 - -  E)VP] or V[(I - E)P ] should be used in these equations. Both forms satisfy the condition that 
when the corresponding momentum equations for the two phases are added, the resulting pressure 
gradient term must be VP. Here, the equal pressures model (Stewart & Wendroff 1984) is adapted, 
i.e. PL = Pc = P. The surface tension effects are not considered in the present study. 

Fct is prescribed empirically (see next section). Equations [1]-[3] when written for both phases 
constitute a closed set of six differential equations for the six unknowns, namely, E, P, UL, VL, UG 
and vc. As a first 

Us =f(E, Reb). [4] 

This explicit form of [4] is discussed later in the text. 

lnterfacial momentum exchange 

The momentum transfer between the different phases takes place via several mechanisms, the 
most important of which being the viscous drag force resulting from the shear stress at the interface 
and the form drag due to the pressure distribution on the surface of individual bubbles. Other 
possible mechanisms for momentum transfer include added mass effect, Magnus effect (due to 
rotation), pressure gradient and shear rate effects of the surrounding fluid (see for example Hinze 
1972). For brevity, only the drag force is considered in the present analysis. The only other force 
which might be of relevance to the present study is the Saffman lift force which acts in the normal 
direction to the relative velocity vector, and it is of significance only in the areas with large liquid 
velocity gradient, e.g. near the walls. Mainly because of the large degree of uncertainty in the 
magnitude and direction of this force (see e.g. Yamamoto et al. 1990), we did not include it in the 
present calculations. But when there is a reliable empirical formula it can easily be incorporated 
in the present calculation procedure. The validity of the above assumptions is tested by comparing 
the calculations with experiments. 
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Table 1. Coefficients for [6] for air 
bubbles in "pure systems"? 

Re b range a b 

0-2 24 1.000 
2-10 23.66 0.981 

10-100 14.9 0.780 
100-1000 6.9 0.613 

?"Pure systems" meaning uncontami- 
nated solutions (see Cliff et  al. 
1978, for details). 

In the bubbly flow regime, the total drag force can be related to that of a single bubble. Hirt 
(1982) and Harlow & Amsden (1975) suggested a relation for water droplets in steam where they 
accounted for bubble-to-bubble interaction crudely by multiplying the usual drag relation with an 
E term. For our problem, PG in the original equation is replaced by PL and E by (1 - E). The relation 
that we used is: 

3 lUL - u~ I 
FCL = ~E2(1 - E)pL ~ C~ [5] 

where dp is the droplet diameter and Co is the drag coefficient for an isolated droplet. 
As a first approximation, [5] is used for the bubbly flow regime of this study where CD is replaced 

by an empirical relation for bubbles in water. Such a CD relation can be derived by curve fitting 
to the experimental data presented by Clift et al. (1978). For bubbles in "pure systems", the 
following function is suggested by us, 

CD = a Reb b [6] 

where Reb is the bubble Reynolds number defined as 

pLlUL - -  u~ldb 
Reb = 

#L 

The coefficients a and b are given in table 1 for different Reynolds number ranges. This particular 
form is adopted because it simplifies the calculation of relative velocity considerably. 

Simplification for the gas phase 
Instead of solving for the gas momentum equations, first the gas velocities are determined from 

an empirical relative velocity relation. For small void ratios (i.e. dilute flow with a dispersed gas 
phase) the gas velocities in the radial and axial direction can be calculated from 

v, = 0 or VL = VC [7] 

uG = u, + UL [8] 

where the relative velocity, us, is given by 

u, = Ub~ (I-E). [9] 

Ub~o is the terminal velocity of an isolated bubble in an infinite liquid medium. The effect of void 
ratio, E, on the relative velocity as given in [9] is suggested by Wallis (1962). Ub~ can be calculated 
by equating the drag force to the difference of the buoyancy force and the weight of the bubble. 
With the drag relation [6] this force balance results in 

Ub~ = [ 4  (PL ~PG)gdb ( pLdb yl '/'2-b) [10] 
3a  PL \ - - ~ L  ,] _J 

For example with b = l and a = 24 (i.e. Stokes range) [10] reduces to 

1 (PL--PG)gd2. [!1] 
Ub~ = 18 #L 

If the water (or liquid) is not pure, the degree of contamination may have significant influence on 
Ub~. For such cases, the empirical data presented by Cliff et al. (1978) can be used. Another 
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alternative is to use the terminal velocity relations presented by Hewitt (1982, chapter 2) where the 
terminal velocity of  bubbles in clean fluids is expressed as a function of  Reb and the Galileo number 

pL 0-3" 

Profiles for E distribution 

As a further simplification in the present model, e (x, r) is assumed to vary as E = EcE (r), and 
the shape of  the E (r) profile is prescribed empirically. The purpose of  this is to investigate the 
influence of  profile shape assumptions usually made in most approximate models. The advantage 
of prescribing the E profiles instead of determining them from [14] is to eliminate computational 
uncertainties such as numerical diffusion in solving [14]. Among the various shapes investigated 
are linear, parabolic and cosine profiles. The cosine profile, for example, is given by 

, (x , r )=S0.5 ,c [1  +cos(~r/rs)] r <<,rs 
[121 r~<r <<,R 

where R is the column radius and r~ is the radius of  the bubble street as observed from experiments 
(Rietema & Ottengraf 1970). Both r~ and Ec can be functions of  x [see figure 2(b)]. The center line 
value Ec is determined from 

Oa = 2nS~E (r)uc(x,r)r dr [13] 

to ensure continuity for the gas phase. Hence, only the shape of the E profile is assumed a priori, 
but the actual magnitude is calculated as part of the solution. Calculations are also performed 
where E (x, r) is calculated from the conservation of  mass equation for the gas phase, i.e. 

t) I t )  
-~x (eUG) + r ~ r  (ErVG) = 0. [14] 

Equation [14] is the counterpart of  [1] written for the gas phase, i.e. in [1] pL(1 -- E) = Pl is replaced 
by pGE = P2 UL is replaced by u c and VL is replaced by vG; when p~ = constant it cancels out. 

3. N U M E R I C A L  M E T H O D  

The form of the equations for the continuous liquid phase ([2] and [3]) is amenable for using 
the finite volume technique (e.g. Patankar 1980) which has been successfully used for the solution 
of  steady, incompressible, single-phase, recirculating flow problems. This formulation takes into 
account density variation (say due to buoyancy effects) in space which is suitable for the present 
problem where the microscopic density is constant but the macroscopic density varies according 
to Pl = PL( 1 -- E). The well known "SIMPLE" algorithm (see e.g. Patankar 1980) is employed to 
calculate the pressure field iteratively. However, modifications have been made to account for the 
pressure gradient terms (1 - E)dP/t)x and (1 - E)t)P/t)r, and the additional momentum source terms 
FcL(UG- UL) and FcL(VG- VL). These modifications have been incorporated in a readily available 
computer code, TEACH (Gosman & Ideriah 1976; Durst & Loy 1984) and the modified version 
has been used for the present calculations. 

The "hybrid" difference scheme is used in the formulation. This scheme has the property that 
it switches from central to upwind differencing for high Peclet numbers (Pe = pLAXUL/PL) for the 
convective terms; for the diffusive terms, the central differencing is employed at all times. For the 
present application the maximum Pe had an order of  magnitude of  1.0. That is, central differencing 
is used for most of  the flow region. This is an important feature of  the method especially for 
calculating the void fraction distribution from [14] which has no physical diffusion. Since the central 
differencing is a second-order accurate scheme, it minimizes the numerical diffusion. Equation [14] 
was solved iteratively using the same numerical technique for solving the general transport 
equation, e.g. [2]. The right-hand side is set equal to zero by appropriately setting the coefficients, 
such that 

~1 m~ £, UL m=~ UG) DL ~-~ VG, ~L ~ O. 
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After the liquid velocity components are calculated via SIMPLE algorithm, the gas velocity 
components are calculated from [7] and [8]. The initial distribution of  E was guessed. Iterations are 
continued with the global gas continuity [13] is satisfied to a reasonable degree of accuracy, as 
discussed later. It should be noted that the pressure, P, is calculated iteratively so that the equation 
of continuity for the liquid phase [1] is implicitly satisfied. 

Boundary conditions 

No slip condition was enforced for the liquid velocities at the walls and at the air inlet (distributor 
plate); at the center line (r = 0) symmetry conditions were imposed. The free surface was assumed 
to be undisturbed at which the axial-velocity, UL, was set equal to zero (i.e. no liquid flux through 
the surface). The radial velocity, VL, at the free surface was calculated from the condition dv/dx = 0; 
this is a somewhat arbitrary condition used as a first approximation since no other information 
is available on VL. 

Boundary conditions are needed for E when it is calculated from [14]. Since there is no mass flux 
through the walls dE~dr = 0 was used at the side walls; the same condition applies at the center 
line due to symmetry. It should be noted that for some cases E = 0 at the wall may be a valid 
condition, but it is certainly not general, because when bubbles collide with the wall E -¢: 0 but its 
flux is, i.e. dE/dr = 0. At the inlet, a uniform distribution e = e0 was assumed, and E0 was estimated 
from the number of  holes on the distributor plate, i.e. E0 = ~,Aj /A , j  = 1, 2 . . . . .  n, Aj is the area of 
an individual hole, A is the total cross-sectional area of the inlet, n is the number of the holes. Then 
from [13] the gas velocity is calculated for a given air flow rate, Q~. 

The E values at the free surface are not needed for the calculations, E = 1 was imposed at the 
grid points just outside the free surface. The present method uses a staggering grid arrangement 
in which the velocities are staggered and the scalar quantities are stored at the centers of the main 
grid cells. The gas velocity at the free surface is calculated from [13] to satisfy continuity once E 
was determined there (see Clark et al. 1990, for particular details). 

Convergence and grid independence 

To ensure properly converged numerical solutions, not only the total residues of difference 
equations are checked, but also the net liquid flux across the column cross section, Q,e, and the 
maximum relative change in the axial velocity, AUm~x/Umax are tracked. The net liquid volume flux 
should be zero for the present problem. This is normalized by the recirculated liquid volume, Qeir, 
given by 

f3' ;; Qcir = 2~ - E )uL r dr = -2re (1 - E )uL r dr [15] 
0 

where r0 is the zero crossing point for uL. After about 300 iterations, both Qn~/Qar and Aumax/um,x 
values were less than 10 -5 . Calculations were continued for another 200 iterations to ensure 
complete convergence. 

Two uniform grid distributions were used, namely a coarse grid of 21 x 12 (Ax = 4 cm, 
Ar = 1 cm), and a line grid of  42 x 23 (Ax = 2 cm and Ar -- 0.5 cm). The difference in liquid velocity 
from the coarse grid and fine grid solutions was less than 1%. The fine grid solutions are presented 
in this paper unless stated otherwise. 

4. D E S C R I P T I O N  OF CASES S T U D I E D  

The experiments o f  Rietema & Ottengraf  

The numerical study simulated, as closely as possible, the experiments performed by Rietema 
& Ottengraf (1970) where a laminar liquid circulation and bubble street formation were investigated 
in a Quickfit glass column. The geometric configuration for the glass column is shown in figure 
1. The experimental conditions for the numerically simulated case were: liquid (glycerol-water 
solution) density PL = 1153 kg/m 3, viscosity /~L = 0.35 kg/m-s, air flow rate Q~ = 11.4 cm3/s, gas 
hold-up E 8 = 74 cm 3, mean bubble diameter db = 0.54 era and bubble street diameter D~ = 10.0 cm. 
The glass column had a diameter of 22 cm and a height of  122 cm. Initially the column was filled 
with the liquid solution up to a depth of  80 crn. If the gas hold-up of 74 cm ~ is added to the liquid 
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Figure 1. Geometry of the bubble column (experiments by Rietema & Ottengraf, 1970). 

volume, the total mixture volume requires a column height of  approximately 82 cm. This value was 
used in the simulations. Air bubbles were formed by means of  injection needles. According to 
experimentors, vertical baffles were placed along the wall, so that a reasonably symmetrical street 
could be created. The effect of  the baffles is not considered in the present study. 

For  the set of  calculations where E (x, r) is obtained from the solution of  [14], a step function 
E = E0 for r ~< r~; E0 = 0 for r > r~, was assumed [see figure 3(b)]. E0 was approximated as the area 
fraction of  injection holes to the total area. A hole diameter of  0.5 db was assumed, rdR values 
were varied between 0.3 and 0.9 to study the influence of  distribution at the inlet on the overall 
circulation patterns. 

The experiments of  Durst et al. 

The numerical simulation for the experiments performed by Durst  et al. (1984) is accomplished 
by solving [1]-[3] and [14]; here the E profile is not assumed a priori. In this case, a laminar liquid 
circulation and bubble street formation were investigated in an axisymmetric glass cylinder. The 
cylinder had an i.d. of  0.1 m. The geometric configuration is shown in figure 4. Two liquid heights 
H = 0.098 m and H = 0.278 m were investigated. The liquid (castor oil) properties for the 
numerically simulated case were: density PL = 960.3 kg/m 3 and kinematic viscosity VL = 0.699 X 
10 -3 m2/s. The bubbles were formed through the nozzle located at the bot tom centerline of  the 
cylindrical column. The air was passed through a well-controlled pressure regulator and the 
resulting bubbles left the nozzle at a steady rate of  one every 0.55 s with a diameter db of  about  
5-6.5 mm. A value of  db = 6 mm was used in the numerical simulations. 

As boundary conditions for E, at the inlet boundary, a step function c = E0 for r ~< rs, Co = 0 for 
r > r,, was assumed, where rs is bubble street radius, which was approximated as the bubble radius 
of  3 ram. e0 was determined as the volume fraction of bubbles to the total volume of  bubble street 
between two successively rising bubbles, which resulted in Co = 0.12. 

IJMF 20/6--F 
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Figure 2. Predictions using a cosine profile for ~ [12] (experiments by Rietema & Ottengraf 1970). (a) 

Calculated circulation patterns, (b) calculated t distribution and (c) liquid velocity profiles, 
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5. RESULTS AND DISCUSSION 

Results with prescribed E-profiles 

The results of the calculations using a cosine function for the shape of the E (r) distribution are 
depicted in figure 2. Here, the experiments of Rietema & Ottengraf (1970) are simulated. The 
predicted streamlines plotted in figure 2(a) show the commonly observed circulation pattern with 
a downward flow near the wall and an upward flow near the center of the reactor. The stream 
function is calculated from 

~k = 2nS~)(l -E)pLULr dr. [16] 

The total volume of liquid circulation can be read from figure 2(a) as Qcir ~ 0.16 m3/s. The center 
of the circulation zone is predicted to be close to the free surface. As will be discussed later, the 
circulation pattern is a direct result of the void fraction distribution. The corresponding distribution 
is shown in Figure 2(b); it should be noted that the shape of the E distribution is assumed, but its 
magnitude is calculated as part of the solution. Figure 2(b) shows that the centerline value of the 
void fraction, Ec, decreases with axial distance. This occurs as a result of the increase in the gas 
velocity towards the free surface; to satisfy continuity [13], as the average value of uo over the cross 
section increases the average value of E should decrease. The predicted liquid velocity profiles are 
shown in figure 2(c). The predicted center line velocity of 22 cm/s, at x/L = 0.5 is considerably 
higher than the measured value of 10.5 cm. The boundary of the reverse flow where ue = 0 is 
predicted as r0 = 0.50; this is in good agreement with experiments. The agreement is also good for 
the maximum reverse flow velocities which are seen to be 3-4 and 3-5 cm/s for experiments and 
predictions, respectively. Of course, these quantities do change with axial distance and with the 
prescribed bubble street radius, r s. 

Calculations performed with various bubble street radii show that a decrease in rs causes an 
increase in E values; thus an increase in the liquid velocity and vice versa. This also effects the 
boundary of the reverse flow zone. For example, for r JR = 0.65, the predicted centerline velocity 
was about 18 cm/s and ro/R = 0.52 at the mid-height of the column. Consequently, the uncertain- 
ties in the location of the region where E ~ 0 (i.e. no air bubbles) will cause differences between 
the experiments and predictions. 

The influence of different void fraction profile shapes on the results were also investigated where 
the gas flow rate and the bubble street diameter were fixed. The linear and parabolic E profiles did 
not influence the results very much. The reverse flow boundary and the maximum reverse flow 
velocities were affected the least. The centerline liquid velocity was somewhat higher for the 
parabolic profile compared to the others. These results show that it is the bubble street diameter 
and the magnitude of E that primarily affect the flow pattern in a column reactor. 

Results from simulation of Rietema & Ottengraf's experiments 

In figure 3, the results of the calculations are depicted where E distribution was calculated from 
[14] directly. The inlet boundary condition was a step function, E = E0 for r JR < 0.5 and E = 0 
otherwise. The resulting recirculation pattern shown in figure 3(a) is significantly different from that 
in figure 2(a). The center of the recirculation zone moved towards the mid-height of the reactor 
and the total circulated liquid volume flow rate decreased to Qeir ~ 0.12 m3/s. The corresponding 
E distribution is shown in figure 3(b). The overall magnitude of E is lower in this case compared 
to that of figure 2(b), and it does not vary as much in the axial direction [see also figure 3(c)]. On 
the other hand, the centerline gas velocity first increases and then decreases with the axial distance 
[figure 3(c)] remaining fairly flat near the mid-height of the column. Figure 3(d) shows that the 
width of the bubble street prescribed at the inlet first decreases, then remains fairly constant over 
a large section of the column, finally increases near the top. This is due to the radially inward and 
outward motion of bubbles near the bottom and near the top, respectively, as a result of convective 
gas velocities in this direction, and it is in conformity with the usual experimental observations (e.g. 
Freedman & Davidson 1969). With the predicted E distribution, there is a much closer agreement 
between the measured and predicted velocity profile at x/L ~-0.5 as shown in figure 3(e). The 
location of the measurements is reported (Rietema & Ottengraf, 1970) to be near the mid-height 
of the column. The magnitude of the predicted UL values are lower because the overall c values are 
lower and hence less drag force is impacted on the liquid by the gas flow. 
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In the present simulations, the migration of bubbles toward the center at the lower half of the 
column is caused by the inward radical velocity component (i.e. radial convection), the opposite 
occurs at the upper half of the column. The liquid flow pattern is a direct consequence of the 
equation of continuity. Initially, bubbles impart a vertical motion on the liquid in the central region 
(i.e. VE # 0). To satisfy continuity, the liquid must form a circulation pattern consisting of one or 
more large eddies (i.e. circulation cells); the number of these eddies is a function of the aspect ratio 
of the column. We set the radial relative velocity vs = 0 [7]. This means the bubbles are transported 
in the radial direction by a convective velocity equal to VG. The flow pattern in circulation columns 
is significantly different than the case of fully developed, axisymmetric, two-phase flow investigated 
by Antal et al. (1991). In their case bubble migration may occur as a result of Saffman's lift force 
(Saffman 1965). Antal et al. did include such a force (ironically without referring to Saffman's 
original paper) but there is a lot of controversy about (even) the direction and magnitude of this 
force (see e.g. Yamamoto et al. 1990 for a review). Another possible mechanism could be the 
pseudo-turbulence flux terms arising from the non-linear drag correlation equation (see O'Brien 
et al. 1993). For our case the liquid velocities are very small, and the bubbles are concentrated near 
the region of the column with practically no bubbles near the side walls. Unlike the vertical flow 
in a tube, initially the liquid is at rest and its motion is derived completely by the motion of bubbles. 

The value of the cut-off point (rs/R = 0.5) for the E-step function at x = 0 was chosen somewhat 
arbitrarily. Strictly speaking, this should be the location of the last row of injection holes on the 
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Figure 4. Geometry of the column for a bubble-driven flow investigated by Durst et al. (1984). All 
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distributor plate. A further increase of this parameter to rs/R = 0.66 resulted in much closer 
agreement between the measured and predicted liquid velocities, but the center of  the recirculation 
zone moved further down towards the inlet. The actual experimental value of  rs/R was pointed 
out to be 0.543 later by a reviewer. When the air flow was distributed over the whole cross section 
of  the inlet area, the predicted circulation was negligibly small. 

This fact seems to have been experimentally verified by Rice (1992) and Rice & Geary (1990), 
and it opens an interesting discussion on whether there would be any liquid circulation under 
perfectly symmetric conditions (i.e. no tilting of  the column etc.) with uniform E distribution at the 
inlet. The present calculations indicate that there would be no circulation under such a situation. 
But the authors believe that this is an unstable flow pattern. The above conclusion should remain 
valid even if some form of  Saffman's lift force is added to the equations, because this force is 
proportional to the liquid velocity gradient which is initially zero. However, different non-uniform 
distribution of ~ at the inlet should result in different circulation patterns, e.g. more than one 
circulation cell over the vertical span of  the column. 

Results from simulation of  Durst et al.'s experiments 

Figure 5 shows the calculated circulation pattern compared to the experimental one for the case 
of  H = 0.278 m, the predictions compare favorably with experiments. Figure 6 shows the 

o o. 
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.j 

Q 
O 

d ~  O 
O O O 

(a) Calcuhtted result (b) Experimental result 

Figure 5. Calculated circulation patterns; H = 0.278 m; experiments by Durst et al. (1984). 
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Figure 6. Calculated E contours for Durst et al.'s experiments; H = 0.098 m. 

distribution. There is a narrow region near the center where E values are large and the c profiles 
remain fairly sharp over the span of  the column. This shows that the model predicts the narrow 
band of  bubble street and that the convection in the redial direction is negligibly small. 

The calculated liquid velocity profiles for the liquid column height of H = 0.098 m are compared 
with measurements in figures 7 and 8. Here the maximum bubble velocity, Ub .... is used for 
normalization of  the liquid velocities. Figure 7(a) depicts the velocity profiles in the lower half of  
the cylinder, and figure 7(b) depicts those in the upper half of the cylinder. Figure 8(a) and (b) 
depicts the radial velocity profiles of  liquid phase at successive axial locations. It is seen from figure 
7 that both the profile shapes and the magnitudes of the axial velocity are predicted in close 
agreement with measured data except very close to the free surface. The agreement between 
measurements and predictions is not as good in the case of the redial velocity distributions (figure 
8), but the basic features of  these profiles are also predicted quite well. The predictions are much 
better in the lower two-thirds of the column. Near the free surface ( x / H  > 0.8) the predicted peak 
values of  the radial velocity are higher than those from experiments. This discrepancy is most 
probably due to the assumptions in the loose boundary condition imposed on the radial velocity 
component at the free surface. The free surface itself was approximated as a plane surface in the 
calculations. This is not the case in the real situation where rising bubbles disturb the free surface 
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as they leave the liquid column. A better way of handling this boundary could have been to use 
the kinematic boundary condition and leave the free surface to change according to that equation. 
Nevertheless, the degree of accuracy with which the overall features of the bubble induced 
circulation patterns can be predicted with a fairly simple model is noteworthy. 

6. CONCLUSIONS 

Numerical calculations of the liquid circulation inside on the isothermal column reactor has been 
performed in two ways: (a) with a prescribed shape for the c profile and (b) with c distribution 
calculated from the transport equation. 

The results indicate that the actual shape of the c profile is not that critical with respect to the 
circulation patterns and the liquid velocity. The overall magnitude of the void fraction as well as 
the bubble street diameter seems to be more important. The E profile shapes used in this study, 
as well as by many other investigators, do not seem to be appropriate for predicting the circulation 
patterns observed experimentally. 

The predictions, including the direct solution for c distribution, lead to a more realistic 
circulation pattern compared to experimental observations. Hence, the profile assumptions used 
in previous approximate models should be viewed cautiously. The boundary condition for c at the 
inlet (i.e. the distributor plate) seems to play a dominant role in determining the overall circulation 
pattern. At this point numerical investigations need more input from experimental investigations. 

The present mathematical model based on the continuum approach and the slip velocity relation 
also predict reasonably well the overall characteristics of the liquid circulation induced by discrete 
air bubbles moving along the center line. 
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The good agreement of predictions with experiments can be taken as evidence for the validity 
of the interface momentum exchange function used in the present model. 

Future work should include extension to turbulent flow as well as to other flow regimes. 
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A P P E N D I X  A 

Derivation of Viscous Terms for Two-phase Flow of Incompressible Newtonian Fluids 

We consider steady, incompressible, newtonian fluids with constant viscosity. The equations of 
motion in cartesian tensor notation are: 
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Continuity 

Momentum 

Ou~ cg p 
.(Pui) = P ~x i+  Ui-~xi = 0 [Al] 

Ou~ O P O 
puj ~ = - E ~x~ + ~ (~0) + F~ [A2] 

(I) (II) (III) (IV) 

where macroscopic density p = PGE for the gas phase and p = pL(I -- E) for the liquid phase, c is 
the void fraction, p is the pressure, T is the shear stress tensor and Fi is the phase interaction force. 
Since the void fraction is not constant, although the fluid has constant microscopic density (i.e. 
PG ---- constant, Pe = constant), the macroscopic density p is not constant, hence Ou~/cgx~ = V .  u ¢ O, 
and the flow is analogous to that of  a compressible fluid. The left-hand side of  [A2] can be written 
in conservative form as 

0 ~(p.ju,) 
using [A 1]. 

If  we now impose the constitutive equations for a newtonian fluid to model the viscous stresses 
such that 

and substitute this into [A2] we obtain for the viscous term III 

#x t9 Ou~ 
Oxj ] +/~ ~ x / ( ~ x j ) .  [A4] 

For single-phase incompressible flow 

Ou--2 = O, 
Oxi 

hence the last term in [A4] vanishes. But this is not the case for two-phase flow (see [AI]). For 
example, for two-dimensional flow the x-momentum equation (i.e. i = 1, ul = u, u2 = v in [A4]) will 
include the following viscous terms 

~x (T~) { ~ 2u ) .  [A51 

The last two terms are the corresponding terms in [2] and [3] in the main text. 


